755 research outputs found

    Generation of Long Insert Pairs Using a Cre-LoxP Inverse PCR Approach

    Get PDF
    Large insert mate pair reads have a major impact on the overall success of de novo assembly and the discovery of inherited and acquired structural variants. The positional information of mate pair reads generally improves genome assembly by resolving repeat elements and/or ordering contigs. Currently available methods for building such libraries have one or more of limitations, such as relatively small insert size; unable to distinguish the junction of two ends; and/or low throughput. We developed a new approach, Cre-LoxP Inverse PCR Paired-End (CLIP-PE), which exploits the advantages of (1) Cre-LoxP recombination system to efficiently circularize large DNA fragments, (2) inverse PCR to enrich for the desired products that contain both ends of the large DNA fragments, and (3) the use of restriction enzymes to introduce a recognizable junction site between ligated fragment ends and to improve the self-ligation efficiency. We have successfully created CLIP-PE libraries up to 22 kb that are rich in informative read pairs and low in small fragment background. These libraries have demonstrated the ability to improve genome assemblies. The CLIP-PE methodology can be implemented with existing and future next-generation sequencing platforms

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    An interdisciplinary intervention for older Taiwanese patients after surgery for hip fracture improves health-related quality of life

    Get PDF
    Abstract Background The effects of intervention programs on health-related quality of life (HRQOL) of patients with hip fracture have not been well studied. We hypothesized that older patients with hip fracture who received our interdisciplinary intervention program would have better HRQOL than those who did not. Methods A randomized experimental design was used. Older patients with hip fracture (N = 162), 60 to 98 years old, from a medical center in northern Taiwan were randomly assigned to an experimental (n = 80) or control (n = 82) group. HRQOL was measured by the SF-36 Taiwan version at 1, 3, 6, and 12 months after discharge. Results The experimental group had significantly better overall outcomes in bodily pain (β = 9.38, p = 0.002), vitality (β = 9.40, p < 0.001), mental health (β = 8.16, p = 0.004), physical function (β = 16.01, p < 0.001), and role physical (β = 22.66, p < 0.001) than the control group at any time point during the first year after discharge. Physical-related health outcomes (physical functioning, role physical, and vitality) had larger treatment effects than emotional/mental- and social functioning-related health outcomes. Conclusions This interdisciplinary intervention program may improve health outcomes of elders with hip fracture. Our results may provide a reference for health care providers in countries using similar programs with Chinese/Taiwanese immigrant populations. Trial registration NCT01052636http://deepblue.lib.umich.edu/bitstream/2027.42/78259/1/1471-2474-11-225.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78259/2/1471-2474-11-225.pdfPeer Reviewe

    Discovery of mating in the major African livestock pathogen Trypanosoma congolense

    Get PDF
    The protozoan parasite, Trypanosoma congolense, is one of the most economically important pathogens of livestock in Africa and, through its impact on cattle health and productivity, has a significant effect on human health and well being. Despite the importance of this parasite our knowledge of some of the fundamental biological processes is limited. For example, it is unknown whether mating takes place. In this paper we have taken a population genetics based approach to address this question. The availability of genome sequence of the parasite allowed us to identify polymorphic microsatellite markers, which were used to genotype T. congolense isolates from livestock in a discrete geographical area of The Gambia. The data showed a high level of diversity with a large number of distinct genotypes, but a deficit in heterozygotes. Further analysis identified cryptic genetic subdivision into four sub-populations. In one of these, parasite genotypic diversity could only be explained by the occurrence of frequent mating in T. congolense. These data are completely inconsistent with previous suggestions that the parasite expands asexually in the absence of mating. The discovery of mating in this species of trypanosome has significant consequences for the spread of critical traits, such as drug resistance, as well as for fundamental aspects of the biology and epidemiology of this neglected but economically important pathogen

    The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms

    Get PDF
    © 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization
    corecore